
NCERT Solutions for Class 9th Mathematics Chapter 11 – CONSTRUCTIONS

EXERCISE 11.1

1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Ans

Given: A ray AB with the initial point A as shown in the figure.

To Construct: A ray AC such that \angle CAB = 90°.

- 1) Draw a ray AB with A as the initial point.
- 2) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at D as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point E.
- 4) Taking E as centre and with the same radius as before (in step 2), draw an arc intersecting the previously drawn arc in step 2 at point F.
- 5) Now, taking E and F as centres and with the radius more than $\frac{1}{2}$ EF, draw arcs to intersect each other at point C.

An Enlightening Path of Knowledge

6) Join AC. Then AC is the required ray making an angle of 90° with ray AB at the initial point i.e. \angle CAB = 90° .

Justification:

Join AE, AF, DE, CE, CF and EF.

In Δ ADE

AD = DE = AE (by construction)

Thus, \triangle ADE is an equilateral triangle.

» \angle EAD = 60° (angle of an equilateral triangle) -----(1)

Similarly Δ AEF is an equilateral triangle

» \angle EAF = 60° (angle of an equilateral triangle) -----(2)

In \triangle AEC and \triangle AFC

AE = AF (by construction; radii of same arc)

CE = CF (by construction; formed by arcs of equal length)

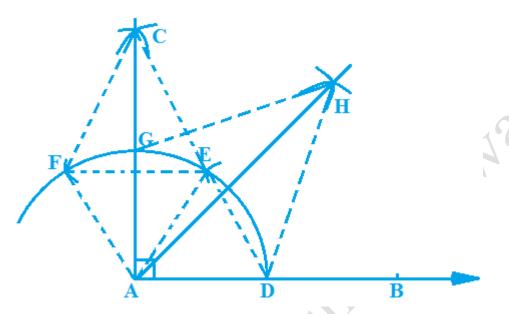
AC = AC (common)

» \triangle AEC \cong \triangle AFC (SSS congruence rule)

So, ∠ EAC = ∠ FAC (CPCT) -----(3)

But \angle EAC + \angle FAC = \angle EAF = 60° (using equation (2))

 \Rightarrow \angle EAC + \angle EAC = 60° (using equation (3))


∠ EAC = 30° -----(4)

Therefore, $\angle CAB = \angle EAD + \angle EAC$

 $=60^{\circ} + 30^{\circ} = 90^{\circ}$ (using equations (1) and (4))

2. Construct an angle of 45° at the initial point of a given ray and justify the construction.

Ans

Given: A ray AB with the initial point A as shown in the figure.

To Construct: A ray AH such that \angle HAB = 45° .

- 1) Draw a ray AB with A as the initial point.
- 2) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at D as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point E.
- 4) Taking E as centre and with the same radius as before (in step 2), draw an arc intersecting the previously drawn arc in step 2 at point F.
- 5) Now, taking E and F as centres and with the radius more than $\frac{1}{2}$ EF, draw arcs to intersect each other at point C.
- 6) Join AC. Then AC is the ray making an angle of 90° with ray AB at the initial point A i.e. \angle CAB = 90° . Let AC cut the arc drawn in step 2 at point G.
- 7) Taking D and G as centres and with the radius more than $\frac{1}{2}$ DG, draw arcs to intersect each other at point H.
- 8) Join AH. Then AH is the required ray making an angle of 45° with ray AB at the initial point A i.e. \angle HAB = 45° .

An Enlightening Path of Knowledge

Justification:

Join AE, AF, DE, CE, CF, EF, HD and HG.

In \triangle ADE

AD = DE = AE (by construction)

Thus, Δ ADE is an equilateral triangle.

$$\Rightarrow$$
 \angle EAD = 60° (angle of an equilateral triangle) -----(1)

Similarly \triangle AEF is an equilateral triangle

»
$$\angle$$
 EAF = 60° (angle of an equilateral triangle) -----(2)

In \triangle AEC and \triangle AFC

AE = AF (by construction; radii of same arc)

CE = CF (by construction; formed by arcs of equal length)

AC = AC (common)

» \triangle AEC \cong \triangle AFC (SSS congruence rule)

But
$$\angle$$
 EAC + \angle FAC = \angle EAF = 60° (using equation (2))

$$\Rightarrow$$
 \angle EAC + \angle EAC = 60° (using equation (3))

Therefore, \angle CAB = \angle EAD + \angle EAC

$$=60^{\circ} + 30^{\circ} = 90^{\circ}$$
 (using equations (1) and (4)) -----(5)

In \triangle DAH and \triangle GAH

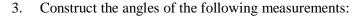
AD = AG (by construction; radii of same arc)

DH = GH (by construction; formed by arcs of equal length)

AH = AH (common)

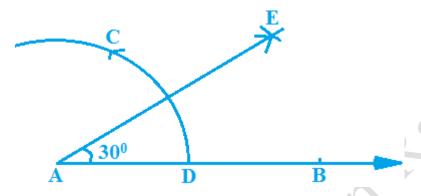
» \triangle DAH \cong \triangle GAH (SSS congruence rule)

So,
$$\angle$$
 DAH = \angle GAH (CPCT) -----(6)


But \angle DAH + \angle GAH = \angle CAB = 90° (using equation (5))

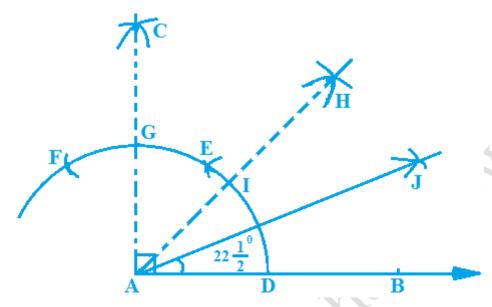
»
$$\angle$$
 DAH + \angle DAH = 90° (using equation (6))

 \rightarrow L DAH = 45°


Hence, \angle HAB = \angle DAH = 45°

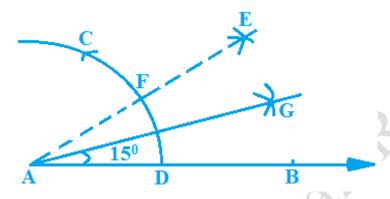
An Enlightening Path of Knowledge

- (i) 30°
- (ii) $22\frac{1}{2}^{\circ}$
- (iii) 15°


Ans (i) 30°

- 1) Draw a ray AB with A as the initial point.
- 2) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at D as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point C.
- 4) Now, taking C and D as centres and with the radius more than $\frac{1}{2}$ CD, draw arcs to intersect each other at point E.
- 5) Join AE. Then AE is the required ray making an angle of 30° with ray AB at the initial point A i.e. \angle EAB = 30° .

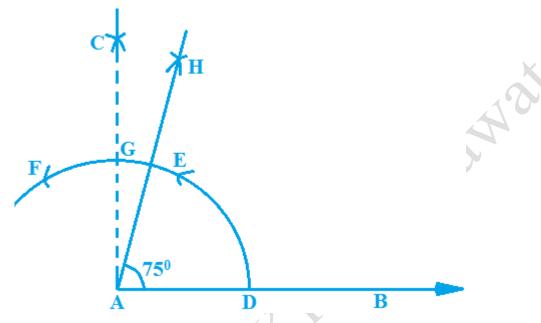
An Enlightening Path of Knowledge


(ii)
$$22\frac{1}{2}^{\circ}$$

- 1) Draw a ray AB with A as the initial point.
- 2) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at D as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point E.
- 4) Taking E as centre and with the same radius as before (in step 2), draw an arc intersecting the previously drawn arc in step 2 at point F.
- 5) Now, taking E and F as centres and with the radius more than $\frac{1}{2}$ EF, draw arcs to intersect each other at point C.
- 6) Join AC. Then AC is the ray making an angle of 90° with ray AB at the initial point A i.e. \angle CAB = 90° . Let AC cut the arc drawn in step 2 at point G.
- 7) Taking D and G as centres and with the radius more than $\frac{1}{2}$ DG, draw arcs to intersect each other at point H.
- 8) Join AH. Then AH is the ray making an angle of 45° with ray AB at the initial point A i.e. \angle HAB = 45° . Let AH cut the arc drawn in step 2 at point I.
- 9) Taking D and I as centres and with the radius more than $\frac{1}{2}$ DI, draw arcs to intersect each other at point J.

10) Join AJ. Then AJ is the required ray making an angle of $22\frac{1}{2}^{\circ}$ with ray AB at the initial point A i.e. $\angle JAB = 45^{\circ}$.

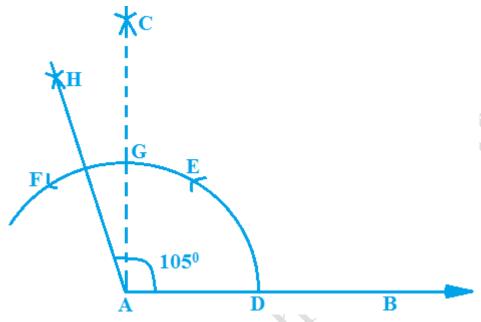
(iii) 15°



- 1) Draw a ray AB with A as the initial point.
- 2) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at D as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point C.
- 4) Taking C and D as centres and with the radius more than $\frac{1}{2}$ CD, draw arcs to intersect each other at point E.
- 5) Join AE. Then AE is the ray making an angle of 30° with ray AB at the initial point A i.e. \angle EAB = 30° . Let AE cut the arc drawn in point 2 at F.
- 6) Now, taking D and F as centres and with the radius more than $\frac{1}{2}$ DF, draw arcs to intersect each other at point G.
- 7) Join AG. Then AG is the required ray making an angle of 15° with ray AB at the initial point A i.e. \angle GAB = 15° .

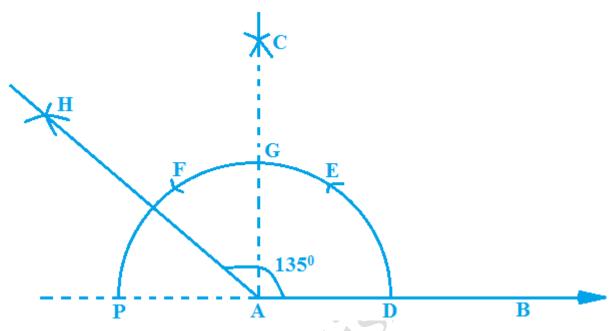
An Enlightening Path of Knowledge

- 4. Construct the following angles and verify by measuring them by a protractor:
 - (i) 75°
- (ii) 105°
- (iii) 135°


Ans (i) 75°

- 1) Draw a ray AB with A as the initial point.
- 2) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at D as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point E.
- 4) Taking E as centre and with the same radius as before (in step 2), draw an arc intersecting the previously drawn arc in step 2 at point F.
- 5) Now, taking E and F as centres and with the radius more than $\frac{1}{2}$ EF, draw arcs to intersect each other at point C.
- 6) Join AC. Then AC is the ray making an angle of 90° with ray AB at the initial point A i.e. \angle CAB = 90° . Let AC cut the arc drawn in step 2 at point G.
- 7) Taking E and G as centres and with the radius more than $\frac{1}{2}$ EG, draw arcs to intersect each other at point H.
- 8) Join AH. Then AH is the required ray making an angle of 75° with ray AB at the initial point A i.e. \angle HAB = 75° .

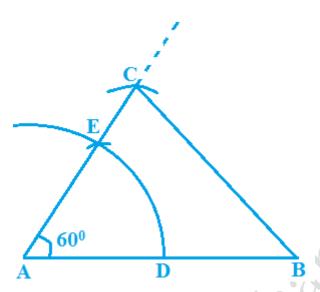
An Enlightening Path of Knowledge


(ii) 105°

- 1) Draw a ray AB with A as the initial point.
- 2) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at D as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point E.
- 4) Taking E as centre and with the same radius as before (in step 2), draw an arc intersecting the previously drawn arc in step 2 at point F.
- 5) Now, taking E and F as centres and with the radius more than $\frac{1}{2}$ EF, draw arcs to intersect each other at point C.
- 6) Join AC. Then AC is the ray making an angle of 90° with ray AB at the initial point A i.e. \angle CAB = 90° . Let AC cut the arc drawn in step 2 at point G.
- 7) Taking F and G as centres and with the radius more than $\frac{1}{2}$ FG, draw arcs to intersect each other at point H.
- 8) Join AH. Then AH is the required ray making an angle of 105° with ray AB at the initial point A i.e. \angle HAB = 105° .

An Enlightening Path of Knowledge

(iii) 135°



- 1) Draw a ray AB with A as the initial point.
- 2) Taking A as centre and some radius, draw a semi-circle, which intersects AB at D and BA produced at P as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn semi-circle at point E.
- 4) Taking E as centre and with the same radius as before (in step 2), draw an arc intersecting the previously drawn semi-circle in step 2 at point F.
- 5) Now, taking E and F as centres and with the radius more than $\frac{1}{2}$ EF, draw arcs to intersect each other at point C.
- 6) Join AC. Then AC is the ray making an angle of 90° with ray AB at the initial point A i.e. \angle CAB = 90°. Let AC cut the semi-circle drawn in step 2 at point G.
- 7) Taking P and G as centres and with the radius more than $\frac{1}{2}$ PG, draw arcs to intersect each other at point H.
- 8) Join AH. Then AH is the required ray making an angle of 135° with ray AB at the initial point A i.e. \angle HAB = 135°.

An Enlightening Path of Knowledge

5. Construct an equilateral triangle, given its side and justify the construction.

Ans

Given: A side of a triangle of given length. Let the side is AB such that AB = 10 cm.

To Construct: An equilateral triangle ABC with each side equals to 10 cm.

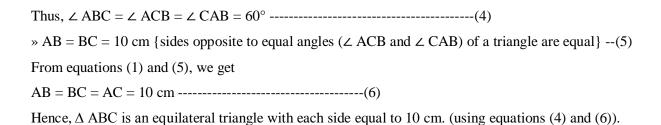
Steps of Construction:

- 1) Draw a line segment AB as one side of the triangle such that AB = 10 cm.
- 2) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at D as shown in the figure.
- 3) Taking D as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point E.
- 4) Join AE.
- 5) Taking A as centre and radius equal to 10 cm, draw an arc which intersects AE produced at C as shown in the figure.
- 6) Join AC and BC. Then Δ ABC is the required equilateral triangle with each side equal to 10 cm.

Justification:

In \triangle ABC

$$AB = AC = 10 \text{ cm (by construction)} -----(1)$$


$$\rightarrow$$
 ACB = \angle ABC (angles opposite to equal sides of a triangle are equal) -----(2)

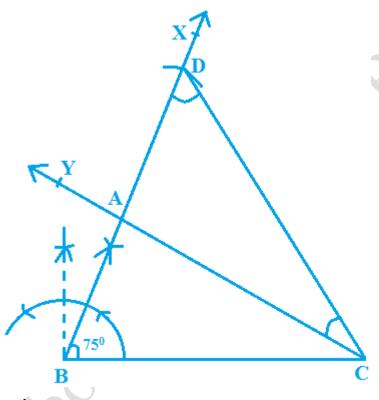
$$\angle CAB = 60^{\circ}$$
 (by construction) -----(3)

But,
$$\angle$$
 ACB + \angle ABC + \angle CAB = 180° (angle sum property of a triangle)

$$\rightarrow$$
 \angle ABC + \angle ABC + 60° = 180° (using equations (2) and (3))

$$\Rightarrow \angle ABC = 60^{\circ} = \angle ACB$$

EXERCISE 11.2


1. Construct a triangle ABC in which BC = 7cm, $\angle B = 75^{\circ}$ and AB + AC = 13 cm.

Ans Given: Side BC, \angle B and sum of two sides other than BC As fABC, such that BC = 7cm,

 $\angle B = 75^{\circ}$ and AB + AC = 13 cm.

To Construct: \triangle ABC

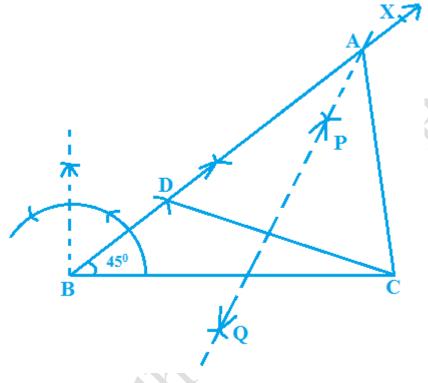
Construction:

Steps of Construction:

- 1) Draw the given base BC = 7cm.
- 2) At B, draw an angle XBC such that \angle XBC = 75°.
- 3) Cut the line segment BD equal to 13 cm (AB + AC) from the ray BX.
- 4) Join DC and draw \angle DCY equal to \angle BDC.
- 5) Let CY intersect BX at A as shown in the figure.

Then, Δ ABC is the required triangle.

An Enlightening Path of Knowledge


2. Construct a triangle ABC in which BC = 8 cm, \angle B = 45° and AB – AC = 3.5 cm.

Given: Side BC, \angle B and difference of two sides other than BC of \triangle ABC, such that BC = 8 cm, Ans

 \angle B = 45° and AB – AC = 3.5 cm.

To Construct: \triangle ABC

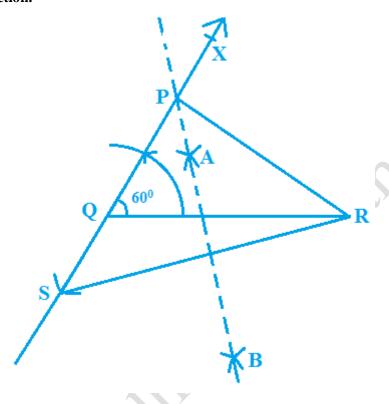
Construction:

Steps of Construction:

- 1) Draw the given base BC = 8 cm.
- 2) At B, draw an angle XBC such that \angle XBC = 45°.
- 3) Cut the line segment BD equal to 3.5 cm (AB AC) from the ray BX.
- 4) Join DC and draw the perpendicular bisector PQ of line segment DC.
- 5) Let PQ intersect BX at A as shown in the figure. Join AC.

Then, \triangle ABC is the required triangle.

An Enlightening Path of Knowledge


Construct a triangle PQR in which QR = 6cm, \angle Q = 60° and PR – PQ = 2cm. 3.

Given: Side QR, ∠ Q and difference of two sides other than QR of ∆a PQR, such that QR = 6cm, Ans

 $\angle Q = 60^{\circ}$ and PR - PQ = 2cm.

To Construct: Δ PQR

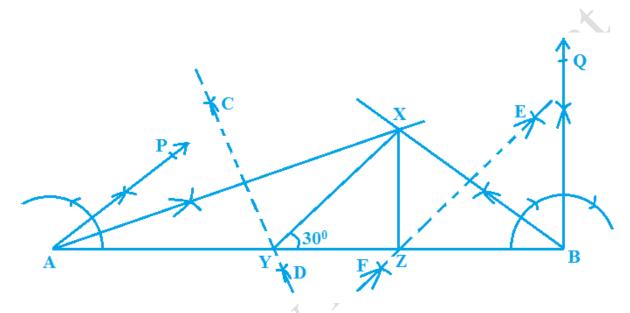
Construction:

Steps of Construction:

- 1) Draw the given base QR = 6 cm.
- 2) At Q, draw an angle XQR such that \angle XQR = 60°.
- 3) Cut the line segment QS equal to 2 cm (PR PQ) from the ray XQ extended on the opposite side of line segment QR.
- 4) Join SR and draw the perpendicular bisector AB of line segment SR.
- 5) Let AB intersect XQ at P as shown in the figure. Join PR.

Then, Δ PQR is the required triangle.

An Enlightening Path of Knowledge


4. Construct a triangle XYZ in which $\angle Y = 30^{\circ}$, $\angle Z = 90^{\circ}$ and XY + YZ + ZX = 11 cm.

Ans Given: $\angle Y$, $\angle Z$ and perimeter of XYZ su be that $\angle Y = 30^{\circ}$, $\angle Z = 90^{\circ}$ and

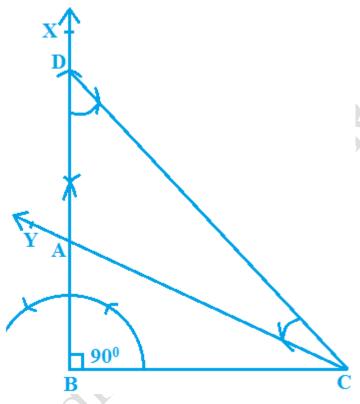
XY + YZ + ZX = 11 cm.

To Construct: ΔXYZ

Construction:

Steps of Construction:

- 1) Draw a line segment AB = 11 cm (XY + YZ + ZX).
- 2) At A, draw an angle of 30° and at B, draw an angle of 90° i.e. \angle PAB = 30° and \angle QBA = 90° .
- 3) Bisect \angle PAB and \angle QBA. Let these bisectors intersect each other at a point X.
- 4) Draw perpendicular bisectors CD of AX intersecting AB at Y and EF of BX intersecting AB at Z as shown in the figure.
- 5) Join XY and XZ.


Then, Δ XYZ is the required triangle.

5. Construct a right triangle whose base is 12cm and sum of its hypotenuse and other side is 18 cm.

Ans Given: Base length and sum of hypotenuse and other side of a right angled \triangle ABC, such that BC (base) = 12cm, \angle B = 90° and AB (other side) + AC (hypotenuse) = 18 cm.

To Construct: \triangle ABC

Construction:

Steps of Construction:

- 1) Draw the given base BC = 12 cm.
- 2) At B, draw an angle XBC such that \angle XBC = 90°.
- 3) Cut the line segment BD equal to 18 cm (AB + AC) from the ray BX.
- 4) Join DC and draw \angle DCY equal to \angle BDC.
- 5) Let CY intersect BX at A as shown in the figure.

Then, \triangle ABC is the required triangle.